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CONCLUSIONS 

1. It appears more appropriate to assume that the bubble 
shape is represented by a spherical segment characterized 
by the base radius Ri and the vertical height H. 

2. A general expression has been developed for initial 
microlayer thickness. 

3. The bubble growth curves obtained on the basis of the 
assumption of “infinitely thick microlayer”. i.e. k,p,Cp, = 
k,p,Cp, are in satisfactory agreement with experimental 
results. 
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NOMENCLATURE 

C,. C,,, drag coefficients; 
spe&c heat of liquid [J/kg-K] ; 
bubble diameter fml: 

L 2. 

diameter of bubble neck in contact with heating 
surface at departure [ml; 
bubble diameter at departure [m]; 
force normal to heating surface IN]; 
acceleration due to gravity [m/s 1; 
average heat-transfer coefficient [W/m’-K]; 
latent heat of vaporization of bulk liquid [J/kg]; 
thermal conductivity of liquid [W/m-K]; 
Jakob number (CpLPLAT/hl,Pv); 
heat flux [W/m’]; 
time [s]; 
wall temperature [OK]; 
saturation temperature [“K]; 
bulk liquid temperature [OK]; 
wall superheat [“K] ; 
velocity of center of bubble, 

i$[misl: 
normal velocity of bubble front, dD/dt [m/s]; 1. At the instant of departure the bubble is spherical in 
terminal velocity [m/s]; shape and it is attached to the heating surface by a short 
thickness of superheated liquid layer [m]; neck of diameter D, and having a contact angle 6 z n/2. 

liquid density [kg/m’]; 
vapor density [kg/m’]; 
coefficient of surface tension [N/m]; 
contact angle [rad]. 

INTRODUCTION 

IT IS well known that at low values of Jakob number the 
bubble growth rates and departure diameters are small and 
bubble departure is controlled primarily by the surface 
tension force, the inertia (drag and liquid inertia) forces being 
relatively small. At high values of Jakob number, on the 
other hand, the growth rates and departure diameters are 
large and inertia forces control bubble departure. The object 
of this paper is to obtain quantitatively the Jakob number 
ranges over which the surface tension force and inertia forces 
control, respectively, the process of bubble departure. 

THEORETICAL ANALYSIS 

Assumptions 
The following assumptions have been made: 
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The neck diameter is the arithmetic mean of the two values 
obtained from the expression [l] 

where 6 denotes the thickness of the superheated liquid layer 
adjacent to the surface. 

2. The value of S may be estimated by [2] 

6 = 1.65k/h (2) 

where h = q/AT represents the average heat-transfer coeffi- 
cient. 

Forces acting on bubble 
The various forces acticg on a bubble are: 

(i) Buoyancy force Fe 

71D3 
$PL-Pds (3) 

(ii) Surface tension force FST 

= nD,asine 

(iii) Liquid inertia force FL, 

1 rrD3 dl/, 
=jTPLdt 

PI 

(4) 

(5) 

(iv) Bubble inertia force F,, 

PI (6) 

FIG. 1. Forces acting on bubble as function of Jakob number. 

(7) 

(v) Viscous drag force FcD 

nD2 V,’ 
= GPLT 2 

nD2 dD ’ 

( > 
= GPLS x 

where C, = C,,/(V,lt;). 
C,, is given by [2] 

c,j, = 2.0 (8) 

and 

K = ,/[;g(pL-pv)DlpLGo]. 

Force balance at departure 
This may be expressed as 

Fs = FST + F,, + FL, + Fe,. (9) 

Since Fe, is small compared to other forces, equation (9) 
may be closely approximated by 

FIX = K-T + (FCD + FM). (10) 

Equation (10) states that the moment the bubble departs 
from the surface the buoyancy force is just balanced by the 
sum of surface tension and inertia (drag and liquid inertia) 
forces. 

RESULTS 

Using experimental bubble growth data of Cole et al. [3] 
and Akiyama et al. [4], the forces FB, FST and (F,,+F,,,) 
have been computed and are plotted as function of Jakob 
number in Fig. 1 and of experimental bubble departure 
diameter in Fig. 2. It appears from these plots that 

F, = FST for log N,, < 1.2 

or log (D,, x 103) < 0.20 (11) 

FE = Fc, + FL, for log N,, > 2.0 

or log (Dd x 103) > 1.0. (12) 
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FIG. 2. Forces acting on bubble as function of departure 
diameter. 
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FIG. 3. Experimental and theoretical departure diameters. 

It seems, therefore. that for departure diameters less than 
about 1.6 mm or for Jakob numbers less than about 16, the 
bubble departure is controlled by surface tension force while 
for D,, > 1Omm (approx.) or N,, > 100 (approx.) the inertia 
forces control bubble departure. For departure diameters 
between 1.6 and 10 mm (approx.) or N,, between 16 and 100 
(approx.) the surface tension and inertia forces are of nearly 
equal importance. 

Figure 3 shows Dd as function of N,,. Curve 1 is a plot 
of experimental departure diameters while curves 3 and 3 
show respectively the values of Dd obtained from the follow- 
ing equations: 

Fe = Fs7 (13) 

F8 = FC,+ F,.,. (141 

It is evident that values of Dd predicted by (14) are in 
reasonable agreement with experiment for N,, > 100 while 
for N,, < 16 the experimental values are closer to those 
predicted by equation (13). 

CONCLCSION 

Equations (13) and (14) predict satisfactorily the bubble 
departure diameter for N,, < 16 (approx.) or N,, > 100 
(approx.). respectively. For intermediate values of N,, the 
departure diameter should be computed from equation (10). 
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h, 
AT. 

Ra. 

Greek syn 

c(, 
@, 

cp% 

NOMENCLATURE 

thickness of model; 
temperature difference between lower and 
plane; 
acceleration of gravity; 
dimensionless Cartesian coordinates: 
dimensionless wave numbers in the x- and 
:-direction, respectively: 
Rayleigh number. 

dimensionless overall wave number: 
dimensionless perturbation temperature: 
tilt angle with respect to the horizontal. 

at 

9, 

of 
S. 

INTRODUCTION 

upper 

THIS note is concerned with free, thermal convection in a 
porous layer being tilted an angle cp with respect to the 
horizontal. The layer is of infinite extent, and is bounded 
by two impermeable perfectly conducting planes separated 
by a distance h. The upper and lower planes are maintained 
at constant temperatures -AT/2 and AT/Z, respectively. 
Both from a geophysical and technical point of view this 
type of flow is of considerable interest, and especially the 
horizontal layer problem is well described in the literature. 
Concerning a tilted porous layer, however, published works 
are not numerous. Most recently Bories and Combarnous 
[1] have studied this problem. Their main experimental 
results may be stated as follows. At small Rayleigh numbers 


